In a paper published Monday in the journal Nature Chemistry, a team of researchers describe their evidence for
the existence and possible function of this knotty DNA, called “human telomeric i-motif.” To identify the i-motif
DNA, the researchers, led by first author Mahdi Zeraati a Ph.D. student at the Garvan Institute of Medical
Research in Sydney, Australia, developed an antibody that would bind to the elusive DNA and allow them to
capture images of it with the help of immunofluorescent staining. They suspect that the i-shaped DNA, which
had
previously only been observed in lab conditions very different from those in a living cell, regulates some genetic functions.
Researchers observed the i-motif DNA blink in and out, suggesting that it's regulating a cell function.
“We provide the first direct evidence for the presence of i-motif structures in the nuclei of human cells,” the
study’s authors write, as this is the first time anyone has observed the i-motif DNA, except for in lab conditions
that don’t represent actual conditions in a living cell. The fact that scientists finally observed this different form
of DNA in human cells is a pretty big deal, but it’s actually even more than just a different shape. It seems to play
by different rules than double-helix DNA, too. It employs nucleotides — the basic A, G, T, and C units that compose
DNA — a lot differently than helical DNA does.
“The i-motif is a four-stranded ‘knot’ of DNA,” Marcel Dinger, Ph.D., an associate professor at Garvan and one of the study’s authors, explained in a statementreleased Monday. “In the knot structure, C letters on the same strand of DNA bind to each other — so this is very different from a double helix, where ‘letters’ on opposite strands recognize each other, and where Cs bind to Gs.”
This paper represents a very early stage of figuring out what the i-motif DNA actually does in human cells. One idea the team has is that the i-motif DNA regulates some cell function, as indicated by the fact that it seemed to blink on and off in their observations. “We think the coming and going of the i-motifs is a clue to what they do,” said Zeraati. “It seems likely that they are there to help switch genes on or off, and to affect whether a gene is actively read or not.”
Future studies of the i-motif DNA will be necessary to figure out exactly what its role is, but this paper sets the groundwork for observing it, which is a significant step toward unlocking its mysteries.
Tags:
Need help? Visit our Support Group for help from our friendly Admins and members!
Visit The Temple
on Facebook:
Posted by Sky a.k.a. JD Aeon on January 1, 2025 at 7:29am 7 Comments 1 Like
Posted by Zhan on December 31, 2024 at 12:04pm 0 Comments 1 Like
Posted by Atrayo on December 31, 2024 at 1:30am 0 Comments 2 Likes
Posted by Zhan on December 21, 2024 at 12:08pm 1 Comment 1 Like
Posted by Rosey Cross on December 9, 2024 at 6:13pm 0 Comments 0 Likes
Posted by Rosey Cross on December 9, 2024 at 6:08pm 0 Comments 0 Likes
Posted by Rosey Cross on December 9, 2024 at 5:59pm 0 Comments 0 Likes
Posted by Rosey Cross on December 7, 2024 at 2:01pm 0 Comments 2 Likes
Posted by Rosey Cross on December 7, 2024 at 1:58pm 0 Comments 1 Like
Posted by Atrayo on November 30, 2024 at 9:46pm 0 Comments 1 Like
Posted by Atrayo on November 25, 2024 at 6:47pm 0 Comments 1 Like
Posted by Rosey Cross on November 8, 2024 at 5:19pm 0 Comments 0 Likes
Posted by Rosey Cross on November 5, 2024 at 5:33pm 0 Comments 0 Likes
Posted by Atrayo on October 27, 2024 at 2:56pm 0 Comments 3 Likes
Posted by Rosey Cross on October 22, 2024 at 5:39pm 0 Comments 0 Likes
Posted by Rosey Cross on October 17, 2024 at 4:29pm 0 Comments 1 Like
Posted by the Draç on October 17, 2024 at 6:00am 0 Comments 0 Likes
Posted by Rosey Cross on October 13, 2024 at 4:45pm 0 Comments 0 Likes
Posted by the Draç on October 12, 2024 at 7:00am 0 Comments 1 Like
Posted by the Draç on October 11, 2024 at 11:00am 0 Comments 1 Like
Added by Imelda James 0 Comments 0 Likes
Added by Imelda James 0 Comments 0 Likes
© 2025 Created by Bryan Powered by